
R I E M A N N  F U N C T I O N S  

F O R  A S Y S T E M  O F  H Y P E R B O L I C  F O R M  

I N  T H R E E  I N D E P E N D E N T  V A R I A B L E S  

BY 
RICHARD KRAFT 

AI~TRACT 
Functions are defined which permit the solution of a special hyperbolic 
system to be expressed as a quadrature of its initial data over the initial 
surface. 

1. Introduction. In this paper Riemann functions 
systems of partial differential equations of the type 

(1.1) L(U) = ( D  - A )  U = 0 

where 

(R.F.) are defined for 

U - (U 1, ..., uN), A ~ (%(x)), x -= (xl, x2, x3) 

./=3 0 
D=(DI,...,DIv), D t E 

j = t % a x j  

and the direction numbers ~ = (%, a~2, ~s3) are constant, distinct and oblique to the 
initial data surface. 

We assume that initial data is specified on an initial data surface, 0, and for 
simplicity and without loss of generality chose for 0 the hyperplane Xl = 0. We 
shall show that the value of U at any point P, not on x I = 0 is a quadrature 
of its initial data and the R.F. over a subset of the initial hyperplane. 

Also for purposes of simplicity and visualization the further non-restrictive 
hypothesis are made that P is in the upper half plane, and that the vectors ~ ,  
i = 1, ..-, N are direction cosines and have positive projections in the xl direction 
i.e. the vectors ~ point in the general direction of the positive xl axis. A restrictive 
assumption we make is that no three vector-~t through P are coplanar; this as- 
sumption will finally be removed. 

Riemann functions were defined for systems similar to (1.1) in [1, 2, 3] and the 
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techniques used here are a synthesis of ideas introduced in those papers. Although 
this paper is almost completely selfcontained, a familiarity with [1, 2, 3] should 
be helpful. 

2. Orientation and notation. The R.F. for each component of U is a set 
of vector valued functions. Each member of the set is a solution to the adjoint 
operator to (1.1), L*, defined in a domain D i. These domains are three dimensional 
conical subregions in the interior of the backward facing ray cone that is formed 
by taking the convex hull of the backward (negative xl direction) characteristics 
(the characteristic Ct is the line in the direction of 4) issuing from P. In order 
to describe more exactly these conical subregions of the backward ray cone it is 
convenient to introduce the concept of a wedge. A wedge is simply the planar 
area between two backward characteristics issuing from P. The wedge formed 
by the backward characteristics Cp and Cq issuing from P is denoted topa. Some- 
times tOnq is used to denote only that part of t%q between P and the initial hyper- 
plane, the exact meaning of tOpg being clear from the context. The wedges generated 
by every pair of backward characteristics issuing from P form the sides of the 
backward ray cone and divide it into the subcones D ~. Two points lie in the same 
subcone if the line segment connecting them does not intersect a wedge. Some- 
times D~is also used to denote only that part of the subcone between P and 
X 1 = 0 .  

For an arbitrary component U K of U we will define in each subcone D ~ a solu- 
tion, W ~, of L* = 0 and together these solutions will comprise the set of R.F. 
for the component U ~' of U. Throughout the paper capital K denotes the index 
of the arbitrary component of U for which R.F. are being defined. 

Cauchy data for the R.F. is defined on the wedges that form the boundaries 
of the domains D t. The motivation for the specification of this Cauchy data is 
explained in the next section. 

3. Specification of the Cauehy data. The value of U ~ at P can be ex- 
pressed in terms of quadratures of U and auxiliary functions over sections of the 
wedges and the initial hyperplane. Thus, by employing Green's identity 

(3.1) fcKV(DKUK-aKKUX)ds+fcUr(DKV+axKV)ds=VUI~I~ ~ 
In equation (3.1), Pk is the point where the characteristic Cx intersects the initial 
data plane and V is an, as yet, unspecified function. When the Kth equation of(1.1) 
is substituted into (3.1) and V is chosen to be the solution of 

(3.2) D~V + a ~ V  = 0 

and Vc~ = 1 
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then we have 

(3.3) = V ~ arl U~lds VU x 
I~K / P~ 

Green's identity is also applied to the area ~oxj , j # K. Using the coordinate 
system formed by taking Cx and Cj as coordinate axis we have 

(3.4) fo~j {ZK(DK UK - aKKU K -  arjU 1) + ZJ(DjU 1 -ajrU r - ajjUJ)}do~ + 

+ ,, {U~r(Dx Zx + arrZ g + ajxZ j) + UI(D~Z J + agiZ 'r + ajTZJ)}do~ 

~-- CKJ{~ ZKUgdsl + ~ ZJUJdsg} 

where the line integrals are taken around the boundary of o~x~; do~ = Cxflsflsx is 
an element of area of ogxj; dsj and dsx are elements of arc length along Cx and C j; 
and CKj is the sine of the angle between Cx and Cj in the wedge cox~ at P. Further- 
more, 

(3.5) ~ ZrUgdsJ = fc ZgU'rdsj- f ZgUgds.t 
.'e',~P'~ 

the first line integrand on the right hand side being evaluated over Cj and the 
second integral over P~Pj, which is the line segment between Pk and P~ lying in the 
initial plane. The signs on the right hand side of (3.5) depend on the orientation 
of Cx with Cj. Similarly 

(3.6) ~ZJUJdsx = fc, ZJUJdsx - [ ZlU~ds,r 

Chosing Z g and Z J to be solutions, in coxj , of 

DxZ g + arrZ r + ajrZ 1 = 0 

DjZ J + aKjZ x + ajiZ~ = 0 
(3.7) 

satisfying 

(3.8) Zg= 0 o n C j  

Z J -- Vag.tC~] on Cr 

and then combining these equations with (3.4) gives 
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(39) f 
O K ]  

{ line integrals of Z'~ andU 's } 

= fc~: VariUJdsx + evaluated along P~P} 

When the Kth and jth equations of (1.1) are inserted in the integrands of the 
left hand side of (3.9) that equation becomes 

(3.10) f f ~. (Z%K,+ ZJaj,)Utdm~J = fc VarjUJdsK 
toKj 

+ { line integrals of Z'S andU '~ } 

evaluated along PIMP} 

After equation (3.10) is summed for all j but j = K and this sum substituted 
into (3.3) the result is 

jC-K I~K,j 
(3.11) (ZKaKI Jr ZJajl)UldO)Kj = U~p) - V(p,x) u(Kp,K) 

j~,r{lineintegralsof Z '~ and U '' } 

+ evaluated over P~P) 

This formula plays a key role in the definition of R.F. and its significance will be 
seen after Green's identity has been written out for each region D j and these 
identities collected. Thus, 

Dj Sj 

In (3.12) W j are, as yet, unspecified vector valued functions defined in the domain 
D J; L ' i s  the adjoint operator of L; Sj is the boundary DJ; 

• 1.-~ . 

and N is the outwardly directed normal on Sj. The surface integrals in (3.12) 
can be further decomposed into a quadrature over the parts of Sj consisting of 
wedges and the parts lying in the initial plane 

Sj 

If in D j 

to Sjn 0 

(3.14) L* (W j) = 0 
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and Cauehy data for the functions W j is assigned on the o~" so that 

rr rr (3.15) 
¢~'. J J J~g J J t~J,K 

then it is seen by combining (3.11)-(3.15) that 

[ line integrals of Z'_~ ~ and U "  
(3.16) U~e) =V~ek)U~pk)+l~x [evaluated over P~Pj } 

r surfa.~, integrals ] 
+ I2 ~ of W ~" and U" 

J L evaluated over S j n  0 
Hence the value of U(~) is expressed in terms of its Cauchy data on 0; and the 

functions V, Z"  and W j ' '  are R.F. Motivated by these considerations, our objec- 
tive is to assign the Cauchy data for the functions W j so that (3.15) holds. 

The terms on the left hand side of (3.15) can be separated into two classes, 
depending on whether the surface integration is over a wedge from the set of 
wedges, {A}, that form the sides of the backward ray cone or whether the inte- 
gration is over a wedge from the set {B} of wedges which lie in the interior of 
the backward ray cone. The terms in the latter set can be paired naturally. Two 
terms form a pair if they are integrations over opposite sides of the same wedge. 
These terms arise from applying Green's identity to the two regions D r and D a 
that lie on opposite sides of a wedge o~pq from the set {B}. 
Thus, 

(3.17) ~ f f  WI, Udog= ~C f f w I ,  Udco 
m 

~ f { B }  I 
£0. 

where ~rp and ~r~ are the outward normals from the regions D ~ and D ~ respectively 
on ~,q. Since we have when/~ is a normal to %q that 

= 0 ,  l = p , q  

O.18) 

Equation (3.17) can be reduced to 

(3.19) '0'" ,~_ ,(,,~ z,,,~ 

.{B} l~p,q 
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The Cauchy data for the set of vectors W j, which are defined in the regions 
D j, will be chosen in a such way that the right hand sides of (3.19) and (3.15) 
are equal. A simple way of accomplishing this is to specify the vectors W j on 
the co 's so that the coefficients of the functions U ~ in the integrands of those two 
expressions are equal. A comparison of these coefficients yields the analytical 
prescription for the conditions that the W i must satisfy (for understanding these 
conditions it is helpful to keep in mind that the subindices on COps indicate that the 
wedge is formed by the characteristics Cp and C s intersecting at P): If Wp is 
defined in a subcone D p one of whose sides is ¢Op~ and o~ps ~ {A} and also 
~Ops ~ {C} = {ujcoxj} then for all points on c%q, the function WPmust satisfy 

(3.20) P-~ W l o~ l • ~V = Z P a l ,  l -t- Z q a s t  

for all I # p, q; but if c%s e {A} and cops ¢ {C} then 

(3.21) W p(~t. ~r) = 0 

for all I # p, q. Similarly if W p and W ~ are defined in the subcones D p and D ~ that 
are separated by ¢Opq and ¢Opq e {B} r~ {C} then at all points on cops the vectors W p 
and W s must satisfy 

(3.22) WtP~', • N P +  Wts~. ~ = ZPaF, + ZSas, 

for all l # p, q; but if O~ps ~ {B} and COps ~ {C} then 

(3 .23)  w,p , • p + w , q , .  = 0 

for all l # p, q. 

If (3.20--3.23) are satisfied then (3.15) holds; and if in addition the W ~ satisfy 
(3.14) then we get equation (3.16). A system of integral equations for the functions 
W j will be constructed such that the solution of the system satisfies (3.20-3.23) 
and (3.14). 

4. Construction of the system of integral equations. We will obtain the 
system of integral equations by illustrating how a typical equation is derived. 
A single equation will be associated with each unknown, Wz ~ so that the number of 
unknowns and equations in the system are the same. Since the numbering of the 
subcones D ~ is arbitrary there is no loss in generality in taking i = 1. To derive 
the equation associated with W~ 1 at an arbitrary interior point P1ED I draw 
through P1 the characteristic Ct. This characteristic intersects successively wedges 
W1, ".-, W~-I from the set {B} terminating at a point P, on a wedge W~ that forms 
part of the boundary of the backward ray cone. Let the points of intersection of Ct 
with these wedges be ordered according to their distance from P1 and denote 
them by P2, "", Ps. 

Similarly, in passing from P~ to P~ the characteristic C~ passes successively 
through the subcones D1, ... D ~- 1. i f  pro and Pn (where Pn is in the positive direction 
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from Pro) are any two points inside or on the boundary of a subcone D' then by 
integrating the system (3.15) there results 

+ P" 

'+" +.)=+:+ L 
In the case of interest to us Pm and P, will belong to {PI, "",P+} and will hence 
be on opposite sides of the boundary of a subcone D "~ {D I, ..., DS}. The integral 
equation for ~ l i s  obtained by combining (3.20-3.23) and (4.1). 

Thus putting Pm= P1, P,, = P2 in (4.1) it becomes 

Since P2 ~ o)1 - %1,~1, we get by using (3.22) (for the sake of argument it is assumed 
0) 1 e {C}) in (4.2) that 

(4.3) W](P1) = WzZ(Pz) + ( ~ " / q " ) - l ( Z " a , :  + Z"a,,,) 

+ fpP 2 (~ a,jW))ds 

where in deducing (4.3) the relation 

( 4 .  ; + 1 ) - 1  = _ 1 

and (3.18) have also been used. By employing (4.1) with r = 2 and P= = P2, 
P, = Pa in the right hand side of (4.3) it becomes 

+ ) (4.4) Wt'(P1) = Wt2(P3)+(~t" N~l)-l(Z'lapll+Z"ae,l)[ + ]EallW ] ds 
P2 P1 

+ / P i '  ( ~  atjW]) ds 

Since P3 e 092 the procedure in deriving (4.4) from (4.2) can be repeated and so onj 
The final equation for Wzl(P1) is 

= Z q t a  ~ I (4.5) Wtl(Pa) (~t" J~l)-l(ZPlarll  + qtl)Ie2 + "'" + 

:+' ( ) + ]E ~a,jW 7 ds 
m = l  alP,,, 1=1 

The system of equations consisting of equations like (4.5) for all Wj +, (i -- 1,...), 
l = 1, . . . ,N can be solved by the method of successive approximations in the 
standard manner. Since the way in which this system of integral equations was 
derived from (3.20-3.23) and (3.14) is reversible the solution of the system will 
satisfy those conditions; and as has been demonstrated this implies the functions 
W ~ are R.F. for (1.1). 
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The preceeding derivation of Equation (4.5) contains a source of ambiguity 
that was glossed over. The tacit assumption was made that D ~ was separated 
from D ~+ ~ along C~ by a unique wedge coi+ 1 whereas examples are readily con- 
structed where the point at which Ct crosses between D i and D ~+~ lies on the 
line of intersection of two or more wedges. We will show that there is no real 
ambiguity in this circumstance by extending the prescription for the Cauchy 
data so as to include these cases. When C~ crosses between two subcones at a 
point P* on the line of intersection of two or more wedges then perturb the point 
PI so that C~ crosses between D ~ and D i+ ~ at a point P** not on the line of inter- 
section of two wedges. At the perturbed point P** the Cauchy data is unambi- 
guously assigned by the conditions (3.20-3.23). The extension of our prescription 
is completed by defining the Cauchy data at P* to be limit of the Cauchy data 
for P** as P** approaches P*. This limit is independent of the way P** approaches 
P* .  

In the previous discussion it was assumed that no three characteristics through P 
lie in the same plane. This assumption was employed explicitly in (3.18) and 
implicitly in asserting that the wedges divided the backward ray cone into 3- 
dimensioned subcones. We will sketch how this restriction can be removed. 

A different proceedure must be adopted only when defining the R.F. for a 
component U r of U for which CK is coplanar with more than one other charac- 
teristic through P. We consider the representative case of a component U r of U 
for which the characteristics C~,..., CK through P are coplanar while none of the 
other characteristics CK+I, "", C~ through P lie in that plane. In order to suc- 
cessfully carry through the method of section 4 for defining the integral equation 
(4.5) in this case it is necessary to replace equation (3.11) with a more suitable 
expression for the value of U~p). This is because (3.18) is false in the present 
situation; and hence if the method of section 4 were carried through then equation 
(4.5) would contain a division by zero. 

This difficulty can be circumvented by substituting in place of (3.11) the new 
expression for U~p,) 

K-- 1 /line integrals of the functions / 
(4.6) U~I) = V(P;)Ux(P'~) + j=IZ [Zit and U evaluated along PjPj+ J 

+ Z Z UJdto 
/ = I  i=K+l  l 

~Of*i + I 

which is derrived using the methods of [1, 2]. In equation (4.6) the function V 
is an auxiliary function defined in a manner similar to the definition of the given 
in (3.2) while the functions Z u are constructed in a manner analogous to the 
construction of the W vs given in section 4. 

Equation (4.6) expresses the U ~ as a linear functional of the Cauchy data of the 
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functions U 1, ..., U K evaluated along P~P~and surface integrals of  U K+I, .-. U ~ 

evaluated over the wedges ~o~.~+1. These latter quadratures can be reexpressed 
as quadratures of  the functions U over 0. The method of proceedure being 
entirely analogous to that used in going from (3.11) to (4.5) except (4.6) replaces 
(3.11). The function W i in this case are defined, of coarse, only in the non-dege- 
nerate 3-dimensional subcones. This procedure is feasible when beginning with 
(4.6) instead of  (3.11) because Cauchy data does not need to be assigned for any 
component W~ J of W j on a wedge for which (~'l " N) = 0. 
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